Power Battery mediapartner voor de Battery Recycling Conference & Expo 2025
Power Battery treedt op als mediapartner voor de Battery Recycling Conference & Expo, die op 11 en 12 juni 2025 plaatsvindt in Messe Frankfurt, Duitsland.
Als bedrijf dat zich richt op innovaties binnen de batterijindustrie, is het essentieel om op de hoogte te blijven van de nieuwste ontwikkelingen. Tijdens de vorige editie in juni 2024 hebben we uitgebreid onderzoek gedaan naar batterijrecycling en verschillende informatieve artikelen gepubliceerd die belangrijke trends en uitdagingen in de sector belichtten.
Dit jaar breiden we onze samenwerking uit met Transworld Events. Deze mediacollaboratie stelt ons in staat om relevante gesprekken te stimuleren en actuele inzichten te delen over de vooruitgang in batterijrecycling en duurzaamheid. We kijken ernaar uit om bij te dragen aan de verdere ontwikkeling van de batterijsector en het bevorderen van een circulaire economie.
For over a decade now, solar panels have been sprouting up on rooftops everywhere, turning everyday sunlight into clean, green energy. At the same time, electric cars have become a common sight. You would think thBattery physics can be confusing, even experts get it wrong sometimes. Listed below there is information that will help you read datasheets and understand the difference between battery variants.
What is voltage (V)?
Voltage is the difference in electric potential between two points. If you would compare electricity to water flow, voltage would be the water pressure in a hose. Even small amounts of water have a big impact if the pressure is high enough, for example a pressure washer. The voltage that is considered safe for humans in most situations is 50V and lower. When working on a higher voltage level, safety measures need to be taken. Check the “safety” section. It is common for battery cells to have a voltage output range between 2.5 and 4.2V. For battery packs with higher voltages you need to chain batteries together in series: 10 batteries of 3.6V will provide 36V in series. One of the drawbacks of batteries is, that their voltage decreases when they hold less charge. A fully charged lithium-ion cell is 4.2V, while it could be 2.5V when almost empty. Therefore, It is commonly rated at 3.6V as an average voltage between full and empty. Note that the end of charge voltage is considerably higher when calculating system voltages and choosing components. A 360V nominal battery pack can reach 420V end of charge for instance.
What is current (A)?
Current is the rate of flow of electric charge past a point, also known as amperage. When you compare electricity to water flow, this would be the volume flow of water. Even at low speed, a huge amount of water can have a big impact, for instance waves at sea. While a high current at low voltage is not considered dangerous directly, the consequences can be huge. For example, current surges can cause extreme heat buildup which can lead to burns. Check the “safety” section. There is a wide variety of battery cell sizes available. Laptop 18650 cells can deliver a couple of amps, while large prismatic cells can deliver hundreds of amps. If you place batteries in parallel, you can increase the amount of current(A) in your pack.
What is a battery?
A battery is an electrochemical cell with two external terminals which powers electric devices. The negative terminal is the source of electrons which will flow trough an electric device towards the positive terminal. While electrons are flowing to power the shown lamp, chemical processes are going on inside the battery. The ions are taken from the negative electrode (anode). After that the ions flow through the electrolyte to be added to the positive electrode (cathode) . The flow of electrons will come to a stop when all the material from the anode and cathode is converted: the battery is depleted. When charging, assuming the battery is equipped with chemicals that allow for charging, this process is reversed. Batteries were already used in the late 1800s for electrical vehicles. Thomas Edison had one, for instance. In the early 1900s 38%(!) of the cars in the US were electric! Edison: “Electricity is the thing. There are no whirring and grinding gears with their numerous levers to confuse, no dangerous and evil-smelling gasoline and no noise.”
What is capacity (Ah of mAh: 1Ah=1000mAh)?
Capacity is the amount of current a battery can deliver for an amount of time, usually one hour. For larger batteries this is often stated in Ah (amperage hour), for smaller cells most of the time in mAh (milliamperage hour). For instance, a battery that is rated “2500mAh” can deliver 2.5A for one hour. This ratio can be shifted, it means it can also deliver 1.25A for 2 hours, or 5A for 30 minutes. There are batteries available with low and high capacities, ranging from 1500 mAh 18650 cells towards 300Ah (300.000 mAh) or even more. Most of the time this capacity will only be reached with a very low current, often only 20% of their rating. So, in the mentioned example the battery can deliver 0.5A for 5 hours. If you use a higher current, the heat generation in the battery will account for some losses and the rated capacity will not be reached. The smaller this deficit, the more suitable the battery is for high drain applications. Sometimes battery suppliers will provide you only with the capacity of the battery. If you know the voltage, you can figure out the amount of energy the battery has. If the voltage is unknown, for instance in battery pack assemblies, a major variable is unknown for you to judge the amount of energy the battery pack holds.
What is C-rate?
C rate is the rate at which a battery can be charged and/or discharged, and it is strongly related with the capacity of the battery. “C” however is not short for “capacity”! This “C” is useful to compare the current (dis)charge capability of various sized batteries. The capacity of a battery is commonly rated at 1C: a fully charged battery rated 2500mAh should provide 2.5A for 1 hour. You can use this C-rate to determine (dis)charge amperage versus time. For instance, a 2500mAh cell rated at a discharge rate of 3C, can be discharged at 7.5A. If the current is 3x higher, the duration is 3x shorter. So, theoretically the battery can be discharged with 7.5A for 20 minutes (drain losses and voltage drop will likely reduce this time by a couple of minutes).
What is power (W or kW: 1kW = 1,000W)?
Electric power, like mechanical power, is the amount of work. It’s the multiplication of Voltage and Current. For instance, if your battery pack can deliver 500A at 400V, it can deliver 500A x 400V = 20,000W or 20kW. This is what you need to know to see if your battery pack can deliver the amount of power you require. Some battery suppliers only provide the absolute maximum their pack can deliver. Most of the time this is only usable for a couple of seconds, and sometimes they even give ratings that are beyond the design specification of the cells they use. So, check the fine print and ask questions: you always need to verify if the pack can provide the rated power for the amount of time you require.
What is energy (Wh or kWh: 1kWh = 1,000Wh)?
There are various definitions of energy used in different fields. Here we will limit ourselves to the following: energy is the amount of power (W or kW) supplied for 1 hour. If it’s not given by a supplier, it can easily be calculated by multiplying the pack capacity with the voltage. For instance, a 500Ah pack at 400V nominal, is a 20kWh pack. Be sure to use the nominal voltage, not the maximum voltage. This is a very important piece of information as this determines the size of your battery pack, its price and what you can do with it. If the previously mentioned battery pack, that can deliver 20kW, only supplies this power for 5 minutes, it contains a lot less energy than a battery pack that can deliver 20kW for 5 hours. Often the amount of energy a battery pack can hold is referred to as “battery size” or “battery capacity”. Strictly speaking this is wrong as neither of those units are used for energy. Especially “battery capacity” is a tricky one as the capacity is indeed an important piece of information, but only in combination with the voltage its useful to determine the energy storage capability of a battery pack.
What is energy density (Wh/kg or Wh/l)?
Especially in mobile applications it is often important that a battery pack is as light and small as possible and yet holds as much energy as possible. More energy means you can use a given power for a longer time, which in a vehicle means more range. When comparing various cells and batteries, you can calculate the amount of energy in relation to their weight (gravimetric) and size (volumetric). For instance, a Nissan Leaf 24kWh pack weighs 294 kg and has a volume of 494 liters. The gravimetric energy density is 24,000Wh / 294kg = 81 Wh/kg The volumetric energy density is 24,000Wh / 494 L = 48 Wh/L This is fairly low. Our 72Volt “range” pack for instance has the following specs: The gravimetric energy density is 190 Wh/kg The volumetric energy density is 316 Wh/L You can also calculate it the other way: if we would have a volume of 494 liter of our batteries, we would have 494L x 316Wh/l = 156,104 Wh or 156kWh of energy. That would be the same as 6 Nissan leaf battery packs. Please note that we are comparing battery packs, not bare cells! You would need to consider the mechanical casing and internal subsystems as well. Bare cells have better figures, but you can’t just toss them in the trunk, now can you?
What is power density (W/kg or W/l)?
Power density is the amount of power you can get out of a given size or weight. Especially in high performance applications with limited available space, like motorcycles or go-karts, this is an important parameter. The same Nissan Leaf pack can deliver 110kW and weighs 294 kg and has a volume of 494 liters. The gravimetric power density is 110,000 / 294kg = 374 W/kg The volumetric power density is 110,000 / 494 L = 222 W/L This is also fairly low. Our 72V “race” pack for instance has the following specs: The gravimetric power density is = 1850 W/kg The gravimetric power density is = 2830 W/L Again, we can calculate the other way: if we would have a volume of 494 litre of our batteries, we would have 494L x 2830W/L = 1.398.020 W or 1398kW or 1.4 MW of power as opposed to the 110kW of the Nissan Leaf! That’s more than 12 times better. If you feel like building a megawatt sports car, talk to us! Also, it is good to keep in mind that we are comparing battery packs, not bare cells!
Power density vs energy density
Just as in life, you can’t get it both ways. If you go for maximum power, you will lose some range, and when you maximise range you will have to make do with less power. If you want both, you’ll have to make a compromise. This is the single most important choice you need to make when it comes to battery selection. The reason for this is fairly simple: if you wish to drain a lot of power from a given cell, the metal poles in that cell will get hot. There is only so much current that can be handled with a given size. This can be solved by increasing the size of those poles. The extra space that these poles will need can’t be used for the actual battery chemicals, hence the loss of energy storage capacity.
The other way around is similar: if you don’t need much power you can optimise the battery for maximum energy, but you can’t drain it too heavily. If you attempt to do that anyway, you will stress the battery too much which will lead to a large voltage drop and a generation of a lot of heat. Best case your batteries will wear down quickly, worst case you are heading for a battery meltdown. Since heat development increases exponentially with amperage, this gets out of hand quickly.
Always stay within the recommended specified amperages and beware for battery suppliers which claim they can do both maximum power and maximum energy, this is physically impossible. Think of it like letting a weightlifter run a marathon and let a runner do weightlifting. They will both be bad at each other’s specialism, and the runner will get hurt trying to lift too much, like a range pack will get damaged when trying to extract too much power. Looking for somebody who could do both is possible, like a decathlon athlete. However, he will never run a marathon as fast as the runner, nor will he be able to do the weightlifting to the extent of the specialist. Our “performance” pack is comparable to the decathlon athlete. In graph you can see how our solutions are related to power and energy.
Chemical composition of batteries
There are numerous types of batteries. We will limit ourselves to lithium batteries since those are, now and for the foreseeable future, the only choice when it comes to applications which require proper energy density.
What is state of charge (SoC)?
This is the indicator of how “full” the battery is, 100% would be full where 0% is empty. There are various ways of measuring this, the two most common are the voltage method and the current integration method.
Voltage method: since an empty battery has a lower voltage than a full battery, it seems logical to determine the SOC based on the voltage. However, the voltage doesn’t go down in a linear fashion. When at 100% the voltage drops quickly, then remains fairly constant and drops quickly again when getting near 0%. This means that between 80% to 20% SOC it is difficult to determine, especially since the voltage varies under load. In cheaper battery management systems (BMS), you can see that the SOC behaves unpredictable because of this effect.
Current integration method: The current (amperage) can be measured in most systems. Since the capacity of the battery is known, and the current variation over time is known, you can “count down” to zero quite accurate. However, when load varies in a system, the capacity of the battery also varies a bit. So, when a battery is discharged at a faster rate than what the system is designed for, the battery can be empty before the SOC indicates such, resulting in unexpected early cutout from the battery management system. Another disadvantage is that this system will drift over time, so you need to reset this frequently. Most commonly the SOC will reset to 100% when the charger is finished charging.
Kalman filtering: to overcome the inaccuracy of both stated systems, an algorithm can be used to combine the data and make a more accurate approximation of the SOC. These algorithms are widely used in signal processing systems. Our sophisticated battery management system uses this.
What is depth of discharge (DoD)?
This is the indicator of how “full” the battery is, 100% would be full where 0% is empty. There are various ways of measuring this, the two most common are the voltage method and the current integration method.
Voltage method: since an empty battery has a lower voltage than a full battery, it seems logical to determine the SOC based on the voltage. However, the voltage doesn’t go down in a linear fashion. When at 100% the voltage drops quickly, then remains fairly constant and drops quickly again when getting near 0%. This means that between 80% to 20% SOC it is difficult to determine, especially since the voltage varies under load. In cheaper battery management systems (BMS), you can see that the SOC behaves unpredictable because of this effect.
Current integration method: The current (amperage) can be measured in most systems. Since the capacity of the battery is known, and the current variation over time is known, you can “count down” to zero quite accurate. However, when load varies in a system, the capacity of the battery also varies a bit. So, when a battery is discharged at a faster rate than what the system is designed for, the battery can be empty before the SOC indicates such, resulting in unexpected early cutout from the battery management system. Another disadvantage is that this system will drift over time, so you need to reset this frequently. Most commonly the SOC will reset to 100% when the charger is finished charging.
Kalman filtering: to overcome the inaccuracy of both stated systems, an algorithm can be used to combine the data and make a more accurate approximation of the SOC. These algorithms are widely used in signal processing systems. Our sophisticated battery management system uses this.
Battery charging
A charger is a device that forces an electrical current into the battery so its state of charge will increase. This may sound simpler than it is, because lithium batteries are actually quite sensitive to temperature, voltage and current. Assuming temperature and voltage are within the normal operating window, the charging principle contains two stages:
Stage 1: Constant current: the charger will supply a predetermined current to the batteries. The amount of current is depending on the application and what the batteries can take. A safe number for normal charging would be 0.5C. This charging will continue while the voltage of the battery pack slowly increases. At some point the maximum voltage of the pack is reached, which for lithium-ion cells is normally 4.2V per cell. When we would continue to charge like this, the voltage would keep going up and the battery will get damaged. This 4.2V is usually the point the batteries are at 80% of their SOC. Now the second stage of charging comes into play.
Stage 2: Constant voltage: When the maximum voltage per cell is reached, the charging current will be lowered to keep the batteries at this maximum voltage. The current will keep dropping until almost zero up to the point that the batteries are fully charged. Because of the dropping current, it takes almost 50% of the time to charge the last 20% of the battery. This is also the reason a lot of EV manufacturers specify their charging time until 80%. When fast charging on the road, it doesn’t make much sense to charge that last 20% as well, in most cases it is sufficient to charge up to 80% and continue your travel.
Both these stages are referred to as “CCCV” charging which is the only way to properly charge a lithium battery. Any other “wizardry” is unnecessary or even hazardous: the memory effect like in NiMH batteries does not exist for lithium-ion, and trickle charge is a great way of shortening your battery’s cycle life. Conditioning a battery is unnecessary: lithium batteries are at their peak capacity when delivered. If the charger is not specifically made for lithium batteries and doesn’t clearly work on the CCCV principle don’t even consider it.
We can provide you with chargers that are a great match with our batteries and battery management system: fully programmable to suite every possible situation. Remarks: Keeping a battery at its peak voltage shortens the lifetime. It’s not advised to trickle charge a lithium battery and keep it at its voltage top. More information about this can be found at the section “cycle life” of the battery. Charging as fast as possible during the first CV stage doesn’t really shorten the time until the battery is fully charged. It only decreases charging time until 70%, and the time to charge from 70% to full will increase. So fast charging is only important when you wish to continue your trip quickly and accept a shorter range. In most cases this is the practical way to go. If you plan your trip along chargers its best to charge when the vehicle is fairly empty: those charges are the quickest and you are on your way again soon.
For racing you want the batteries at maximum charge to use their maximum energy capacity. Even with fast charging you would still need 1.5 hour or more if you want to get the last few percent in: it would be a waste to drag around the weight and not use all the energy it could hold. The time these batteries are at their maximum and minimum voltage is low anyway, providing they are fully charged at the last moment and immediately charged to storage capacity after the race.
Prolonged high temperatures are bad for batteries. They can occur during fast charging and therefore measures are required to cool batteries during fast charging. Our batteries are fluid cooled and can easily transfer the heat out of the pack. So, they can safely be charged with the maximum current the cells are specified. If a battery pack is stressed to its limit and on the verge of overheating, its best to postpone the charging until its cooled down. Our BMS can manage that process to ensure maximum lifetime of your battery pack. Lithium batteries can handle cold temperatures rather well. That means, as long as they are not used. Charging below zero degrees Celsius is not permitted. That includes regenerative braking as that is basically charging the batteries with your drive train! The BMS must be set to prohibit low temperature charging. Our BMS has this feature, and its also capable of preheating our fluid cooled battery pack before charging as this cooling system can also be used as a battery pack heating system for the winter. Often the BMS controls the charger through the CAN bus connection: it will consider battery status, SOC and temperature and will determine the proper setting, which in turn the charger will carry out. Our charger and BMS are an ideal combination and will come custom preset to function optimal in your application.
Charging should start at low current and should take a couple of minutes to reach the full current level. This reduces stress on the battery prolonging its life. Lithium batteries don’t suffer from the memory effect like the older NiMH batteries do. You can charge them at any SOC, and they don’t need to be fully charged. You can charge them until full or only 10 minutes just to reach your destination, no problem. Manufacturers of some chargers claim they can recover batteries which are deemed unable to charge by the BMS. This is impossible: lithium batteries can’t be regenerated. The capacity loss is irreversible. What they mean is that they can charge batteries which are depleted below their normal voltage. They give the battery a boost, so the batteries are brought back above their normal operating voltage, at which point the safety systems of the BMS give the “all clear” to commence normal charging. However, batteries that were below their minimum voltage for a prolonged time are best case damaged, and worst case a fire hazard.
Be sure to charge your battery regularly, even when not in use, and never let it dwell below its minimum voltage. This can happen over time since lithium batteries lose their charge slowly even when not used at all. When batteries are not in use for a prolonged time, try to store them slightly below room temperature and around 50% SOC. Never store them fully charged or fully depleted for prolonged time. When stringing cells to form a high voltage battery pack, it is mandatory that each and every cell in this series connection remains within the proper voltage range. So, each one of those cells must have a BMS chip to monitor it. If this wouldn’t be monitored, and one cell would be at a higher voltage, that cell will raise above a safe voltage during charging while the total of the cells would still seem ok. The same is true for a lower voltage cell which will dip below its operating voltage. If cells aren’t used within their operating range, they will get damaged and will lose capacity rapidly. You have to think of batteries in series like links of a chain: the strength of the chain is defined by the weakest link. The same is true for battery cells: the capacity of the weakest cell defines the capacity of the whole pack. This is the reason why we monitor every single cell, and the BMS will tell the charger to stop charging if even one cell is above its allowed voltage and it will warn or even stop discharging if even one cell is below its allowed voltage.
So, what to do if cells get unbalanced? The BMS chip is able to dissipate power from the cell with a higher SOC, thus balancing it with the others. Our BMS is automatically correcting during the charging process without the need for you to do anything at all. When a battery pack is properly built from quality cells with all the same capacity, this is hardly an issue. It will take up very little time to balance, and your pack’s capacity remains ok. However, when a battery pack is abused or gets old, the imbalance gets larger. This will take up more time to get balanced, and the pack as a whole loses capacity.
What is constant current constant voltage (CCCV)?
This is the accepted way of properly charging a lithium battery as explained under “battery charging”.
What is balancing of batteries?
The process of bringing each cell in a battery pack to the exact same voltage level. Check the “charging” and “BMS” section for more information.
What is electromagnetic interference (EMI)?
EMI is a disturbance in electrical circuits caused by electromagnetic induction. The main source of that in an EV is the controller and the motor, as these components send and receive high powered high frequency pulses. Try to keep the leads between the motor and controller as short as possible, use shielded cable and keep all your sensitive circuits as far away from these parts as possible. That includes your BMS module.
What is CAN bus?
This is a global standard used mainly in automotive applications to let devices communicate with each other without using a main computer or server. It’s fairly resistant against EMI (electromagnetic interference), so also the system of choice in electrical vehicles. It’s a message-based protocol which is standardised in a way that many devices can communicate with each other. For instance, the charger communicates with the battery management system, which in turn communicates with the battery.
Germany’s hydrogen future
Pioneering the green hydrogen revolution
As nations worldwide look to Generation Z for innovative solutions to climate change, Germany is banking on “Generation H”—a robust strategy focused on green hydrogen—to achieve its green energy goals. With a new import strategy for green hydrogen, the German government aims to ensure a steady, sustainable, and diversified supply of hydrogen to fuel its ambitious decarbonization plans. According to Clean Energy Wire | CLEW, this strategy is essential for maintaining energy security as Germany transitions from fossil fuels to renewable alternatives.025 plaatsvindt in Messe Frankfurt, Duitsland.
Growing Hydrogen Demand
Currently, Germany consumes about 55 terawatt-hours (TWh), according to Bruegel – Improving economic policy ,of hydrogen energy, but projections by the Bundesministerium für Wirtschaft und Klimaschutz indicate this could grow substantially by 2030 to between 90 and 130 TWh, and even further to 360–500 TWh by 2045. This substantial rise in demand means that domestic production will be insufficient; as a result, Germany expects to import 50-70% of its hydrogen by 2030, with reliance likely increasing thereafter. To facilitate this import flow, Germany is planning an extensive hydrogen transport infrastructure, including pipelines that will integrate imported hydrogen directly into its energy network, ensuring efficient distribution across the country.
Strategic Positioning and Future Vision
This approach aligns with Germany’s commitment to cutting greenhouse gas emissions while fostering a stable energy supply. The import strategy not only secures diverse global hydrogen sources but also positions Germany as a central player in Europe’s hydrogen economy, enhancing regional energy independence and resilience.
Conclusion
In conclusion, Germany’s hydrogen import strategy is a proactive measure to bridge the energy supply gap while bolstering its environmental objectives. This move toward green hydrogen signifies a strategic shift, reducing reliance on fossil fuels and establishing the infrastructure necessary for a low-carbon future. Germany’s focus on “Generation H” reflects its long-term vision of energy security and leadership in the global energy transition.
Germany’s hydrogen pipeline plan, finished by 2032
For over a decade now, solar panels have been sprouting up on rooftops everywhere, turning everyday sunlight into clean, green energy. At the same time, electric cars have become a common sight. You would think that owners of these new eco-friendly vehicles would be charging their cars in harmony with the sun’s energy during the day to use their green energy as much as they can. But when do people charge their electric vehicle? At night…. At first glance you’d imagine these people are a bit challenged when it comes to logical thinking. Is this the case? Or is there a bit more to the story?
We were always told that this is because they were diagnosed with being employed. However, as work patterns evolve and technology improves, more people are finding ways around this. Enter smart charging—a solution that aligns electric vehicle (EV) charging with renewable energy sources like solar or wind power, optimizing energy usage and reducing the environmental impact.
The Rise of Smart Charging
According to new data from the Rijksdienst voor Ondernemend Nederland (RVO), or Netherlands Enterprise Agency, smart charging is growing in popularity. A recent survey reveals that 63% of people already use smart charging to align with renewable energy sources, while another 19% want to start this practice. Smart charging is more than just plugging in at the right time; it’s about optimizing the entire energy ecosystem.
Obviously there are more ways and reasons to do smart charging. There is for instance Time-of-Use Pricing: Many smart chargers take advantage of fluctuating electricity prices. By charging during off-peak times, when electricity is cheapest, EV owners can save money. In the RVO survey, 23% of respondents already use this method, and 31% expressed interest in starting. A more advanced feature is bi-directional charging, which allows electric vehicles to not only draw energy from the grid but also feed excess energy back into it.
This transforms EVs into temporary energy storage units, helping to stabilize the grid during high-demand periods. While only 4% of people currently use bi-directional charging, nearly 49% want to explore this innovative option. As more people switch to electric vehicles, local grids are experiencing capacity strains. Smart charging helps manage these challenges by charging vehicles when grid capacity allows, ensuring a more balanced energy distribution. Dealing with grid capacity issues is therefore another way or reason to use smart charging. In the RVO survey, 15% of respondents reported using smart charging for this purpose, with another 24% wanting to follow suit.
The Future of Charging
Smarter, Greener, and More Efficient The data from RVO is clear: more people are moving toward smart charging, not just to align with renewable energy, but also to save money, stabilize the grid, and contribute to a more sustainable energy system. Far from being “a bit thick,” electric car owners are increasingly making savvy, environmentally conscious decisions about when and how they charge.
The shift to electric vehicles is only part of the green energy revolution. Pairing EVs with smart charging technologies that maximize renewable energy use and grid efficiency is the next logical step. As smart charging becomes more widespread, it will continue to reshape how we think about energy consumption and transportation.
In short, if you’re still charging your electric car at night without smart charging, it’s time to reconsider. You could be missing out on cost savings, greener energy, and even the chance to contribute back to the grid. Smart charging is the key to driving the energy transition forward.
So, are electric car owners really “a bit thick?” It seems they might just be ahead of the curve.
Want something you could actually smart charge or a grid buffer so you can still use your green energy even when the sun goes down.
As a company, we are interested in the innovations of our battery industry. Recycling batteries is one of the most important technological advances that has to be made to stop unethical mining practices and reduce power of politically unstable partners. To get a pulse of what’s going on in the world of battery recycling we went to visit the Battery Recycling Expo in Frankfurt am Main.
The ideal situation for battery recycling is straightforward: throughout Europe, people could easily dispose of end-of-life batteries. These batteries would be dismantled into their raw materials, which would then be used to manufacture new batteries. This closed-loop system would operate indefinitely, minimizing waste and resource loss. We unfortunately do not live in an ideal world.
Recycling process
STOKKERMILL RECYCLING MACHINERY developes recycling machines for, amongst other things, Lithium-Ion Batteries or LIBs. We inquired about the proper methods for recycling batteries. For NMC and NCA they use a process of separating that happens in 2 stages.
The Black Mass will now undergo a hydrometallurgical process to extract materials. The Black Mass material is dissolved into a solution using an appropriate solvent, often involving acids, bases, or other chemicals. Then the solution is concentrated and purified to remove impurities and unwanted materials. The desired metal is recovered from the purified solution. The desired materials for instance are: cathode materials ( nickel, cobalt or manganese), Lithium chemical solution, Carbon.
The battery cells are safely shredded and sorted. This will give you a lot packaging materials like plastics, steel casings and metal foils ( copper, aluminium). Next to that it will give you black mass, a composition of the remaining materials.
Challenges and Prospects
The recycling processes currently in use fall short of the ideal scenario described earlier. The main challenge is achieving the necessary purity levels, both in the black mass and the materials extracted from it. The separation processes (stages 1 and 2) do not produce battery-grade materials suitable for the production of NMC or NCA battery cells. A 2023 study published by the Royal Society of Chemistry identified several potential solutions, and many companies claim to sell machinery capable of producing battery-grade materials. However, none of these solutions have proven commercially viable. This was evident both in the research findings from 2023 and at the 2024 Battery Recycling Expo. Experts from Duesenfeld, Green Li-ion , and Elemental Battery Metals concurred that no company has yet achieved closed-loop battery recycling to produce battery-grade materials.
Fortum Recycling & Waste, a company based in Finland, claims to have developed a solution. They assert that they have achieved closed-loop battery recycling. Currently, they can produce technical-grade materials and aim to upgrade to battery-grade materials by 2027. They will be able to recycle end-of-life NMC and NCA battery cells and produce battery-grade materials in an in-house facility. However, they are currently encountering some chemical issues that need resolution.
Ontdek de verschillende koelmethoden voor EV-accupakketten
Bij het bouwen of ombouwen van een elektrisch voertuig (EV) is de temperatuurbeheersing van je accupakket cruciaal. Een goed gekoeld accupakket presteert beter, gaat langer mee en is veiliger. Gebruik buiten het optimale temperatuurbereik kan leiden tot verminderde actieradius, lager vermogen en zelfs veiligheidsrisico’s. Maar hoe zorg je voor effectieve koeling, vooral bij hoge vermogens? Ontdek hier de verschillende koelmethoden voor EV-accupakketten.
Luchtkoeling: Eenvoudig maar beperkt
Luchtkoeling is de simpelste methode, maar vaak ontoereikend voor toepassingen met hoog vermogen. Je bent te afhankelijk van de omgevingstemperatuur en luchtstroom, wat niet altijd optimaal is voor je accu’s. Voor veeleisende toepassingen is luchtkoeling meestal niet voldoende.
Vloeistofkoeling: Efficiënt en aanpasbaar
Vloeistofkoeling is effectiever en biedt meer mogelijkheden tot optimalisatie. Een vloeistofgekoeld systeem vereist meer componenten dan een luchtgekoeld systeem, maar biedt ook meer ruimte voor verbetering.
Twee hoofdmethoden voor vloeistofkoeling zijn:
Koelbuizen door modules: De Power Battery modules bieden de mogelijkheid om koelbuizen door de modules te leiden. Hierdoor kan koelvloeistof direct door de accumodules stromen voor efficiënte koeling.
Koelplaten op poolklemmen: Monteer geïsoleerde koelplaten op de hoofdpolen van de modules. Hierbij is het cruciaal om een goede warmtegeleiding van de accu’s naar de polen te garanderen. Deze methode is minder ideaal vanwege de afstand tussen de warmtebron en het koeloppervlak.
Het temperatuurverschil tussen de accu’s en de koelvloeistof bepaalt de mate van warmteoverdracht. Hoe groter dit verschil, hoe effectiever de koeling.
Tips om je vloeistofkoelsysteem te verbeteren:
Verhoog de stroomsnelheid van de koelvloeistof: Dit vertraagt de temperatuurstijging van de koelvloeistof. Technisch gezien vermindert dit het verschil tussen de inlaat- en uitlaattemperatuur. Gebruik een pomp met een hoger debiet of voeg meer parallelle koelbuizen toe.
Verlaag de temperatuur van de koelvloeistof: Een lagere vloeistoftemperatuur verhoogt de warmteoverdracht. In extreme gevallen wordt soms zelfs droogijs toegevoegd aan het koelsysteem.
Gebruik speciale koelvloeistoffen of additieven: Water is de meest gebruikte koelvloeistof, maar er zijn alternatieven en additieven die de warmteoverdracht kunnen verbeteren.
Spray de radiator met verdampende vloeistof: In de racesport wordt soms CO2 of pure alcohol op de radiator gespoten om de warmteoverdracht via verdamping te vergroten.
Voeg een airconditioning toe: Een airconditioningsysteem kan het temperatuurverschil tussen het koelsysteem en de warmtebron aanzienlijk vergroten.
Onderdompelkoeling: Geavanceerd maar kostbaar
Bij deze methode dompel je het hele accupakket onder in koelvloeistof. Deze technologie wordt al gebruikt in supercomputers. Het is zeer effectief maar ook duur, vanwege de speciale elektrisch isolerende en thermisch geleidende vloeistof die nodig is. Deze vloeistof moet:
Elektrisch isolerend zijn
Thermisch geleidend zijn
Geen negatieve invloed hebben op de te koelen materialen
Het ontwikkelen van zo’n vloeistof is complex en kostbaar, wat deze methode minder toegankelijk maakt voor de meeste EV-projecten.
Kies de juiste koelmethode voor jouw EV-Project
Voor de meeste EV-projecten is vloeistofkoeling de beste keuze. Het is effectief, aanpasbaar en relatief betaalbaar. De onderdelen voor een vloeistofkoelsysteem zijn algemeen verkrijgbaar en dus relatief goedkoop. Bovendien kun je gemakkelijk experimenteren met verschillende subsystemen om de prestaties te verbeteren.
Als je langdurig maximaal vermogen nodig hebt, is het belangrijk om je koelsysteem zo goed mogelijk te optimaliseren. Houd er rekening mee dat de temperatuur van de accu’s in hoogvermogentoepassingen dicht bij het maximum van 60-70 graden Celsius kan komen. Gebruik boven de 70 graden Celsius iszeer gevaarlijk, dus zorg ervoor dat de temperatuur onder dit niveau blijft.
Wil je advies op maat voor jouw EV-project? Neem dan contact op met onze experts die gespecialiseerd zijn in koelmethoden voor krachtige accupakketten. Zij kunnen je helpen de ideale oplossing te vinden voor jouw specifieke situatie.
Door de juiste koelmethode te kiezen en te optimaliseren, zorg je ervoor dat je accupakket optimaal presteert, langer meegaat en veilig blijft, zelfs bij hoge vermogens. Succes met je EV-project!
Advies op maat voor jouw EV-project
Het kiezen van de juiste koelmethode voor jouw elektrische voertuig kan behoorlijk uitdagend zijn. Bij Power Battery ontwikkelen we een unieke koelmethode voor batterijpakketten met hoog vermogen.
Neem gerust contact met ons op als je vragen hebt over jouw project, of vraag een consult aan.
Ook deze tractor heeft een vloeistofgekoeld Power Battery pack on board
EOX Tractors staat bekend om de uitstootvrije tractors. Ze draaien op batterijen of op waterstof. Ze gebruiken dus geen traditionele aandrijflijn voorzien van een elektromotor. In plaats daarvan hebben ze hun eigen aandrijflijn ontwikkeld, met motoren in de wielen.Emissieloos Netwerk Infra hield een interview met Tijmen Augustijn en Thomas Hieltjes van EOX. Lees het hier terug.
Stel jezelf en jullie bedrijf voor. Thomas: ik ben verantwoordelijk voor het commerciële gedeelte bij EOX Tractors. Het bedrijf staat bekend om de uitstootvrije tractors. Ze draaien op batterijen of op waterstof. Wij gebruiken dus geen traditionele aandrijflijn voorzien van een elektromotor. In plaats daarvan hebben we onze eigen aandrijflijn ontwikkeld, met motoren in de wielen. Daardoor zijn we een stuk efficiënter.
Tijmen: ik ben directeur bij EOX Tractors. Ik ben hier aan boord gekomen vanuit een persoonlijke motivatie: het is zo’n uniek technisch product, dat de kans moet hebben om volwassen te worden. Er is veel potentie. De truc is nu om het bij elkaar te krijgen en het product tot een succes te maken. Daar wil ik graag mijn steentje aan bijdragen.
EOX Tractors is een doorstart van H2Trac. Er is in ruim 10 jaar tijd veel kennis opgedaan en technologie ontwikkeld. Wij bouwen daar nu op voort. Dat doen we met een andere strategie: behalve het ontwikkelen, produceren en leveren we de systemen nu ook. Waar voorheen vooral aan de techniek gebouwd werd, bouwen we nu ook aan het bedrijf.
Elektrificatie vindt nu vooral plaats bij de kleinere tractoren en machines. Bij het grotere segment zie je vanuit fabrikanten nauwelijks beweging, afgezien van een paar pilotprojecten of studies waarin onderzoek gedaan wordt naar alternatieve brandstoffen. De zelf ontwikkelde aandrijflijn maakt ons bedrijf uniek. Vanaf het lege vel papier zijn wij begonnen om het hele systeem te ontwikkelen. We hadden dan ook alle vrijheid om het zo efficiënt mogelijk in te vullen. Nu zijn we op een bijzondere positie gekomen met wat we in de markt kunnen zetten: uitstootvrije machines met een hoog vermogen.
Sinds wanneer zijn jullie lid van ENI en waarom zijn jullie lid geworden? Thomas: in de infrasector is er een grote behoefte aan emissieloos materieel. Binnen ENI horen we hoeveel er nog ontdekt moet worden, omdat ontwikkeling altijd vooruitloopt op wet- en regelgeving. Dat betekent dat er nog een standaard moet worden ontwikkeld. Het liefst doe je dat samen met anderen: met klanten of potentiële klanten, maar ook met collega-machinebouwers. Dat zou tot regelgeving moeten leiden. Als je kijkt naar de leden van ENI en de activiteiten die worden ontplooid, dan sluit dat heel mooi aan bij wat er relevant is en waar wij als organisatie, maar ook onze gebruikers bij gebaat zijn.
Waar staan jullie op dit moment qua emissieloos bouwen? Thomas: de ontwikkeling en de bouw van de tractoren vormen ons project. De vraag is: wanneer gaat de klant die tractoren inzetten? Op dit moment kunnen we nog niet uitweiden over een concreet bouwproject waarvan we weten dat de tractor daar zal gaan rijden. Wel kunnen we delen dat de waterstoftractor de komende periode voor brede veldtesten wordt ingezet bij activiteiten die in de bouw heel gebruikelijk zijn. De afgelopen weken hebben we de productie opgestart van twee volelektrische EOX-tractoren, die allebei actief gaan zijn in de bouw- en infrasector.
Waar lopen jullie nog tegenaan als het om emissieloos bouwen gaat? Thomas: bij de ontwikkeling van onze tractoren hebben we als uitgangspunt dat ze een hele dag inzetbaar moeten zijn. Het is bij een tractor wel wat lastiger in te schatten, want de werkzaamheden zijn heel divers. Daarom wordt er ook voor een tractor gekozen: je kan er alles mee. Het is niet voor niets dat we zowel een volektrische als een waterstofvariant hebben. Op de ene plek is de laadinfrastructuur toegankelijker en op een andere plek is het beter met waterstof te rijden. In de binnenstad is waterstof juist lastiger, vanwege de vergunningen voor het gebruik ervan.
Tijmen: er is voortdurend contact met andere leveranciers over het laden. We proberen de markt te volgen om te kijken waar de oplossingsroutes zitten. Elektrische tractoren moeten ’s nachts opgeladen worden. De vraag is hoe je de energie die overdag aanwezig is, ’s nachts opslaat. Daar zijn oplossingen voor beschikbaar op de markt. En anders zeggen we: ga voor waterstof. Kies ervoor om lokaal waterstofstacks neer te zetten. We schieten al snel in de gordijnen als het woord ‘waterstof’ valt, alsof het allemaal gevaarlijk is. Maar waar gaat het nu eigenlijk echt om? Hoe spannend is het eigenlijk? Laten we vooral kennis delen, zodat mensen de juiste keuzes kunnen maken, in plaats van het meest veilige scenario kiezen.
Wat heeft ENI tot nu toe voor jullie kunnen betekenen hierin? Tijmen: de worstelingen die je meemaakt als koploper, worden herkend door anderen. Dat vond ik prettig aan de gesprekken. Je staat er niet alleen voor. Samen vind je ingangen en oplossingen. De problemen zijn dus niet uniek en zelfs herkenbaar. Wij zitten hier op een terrein met andere ENI-leden, dus we kunnen makkelijk zaken bespreken.
Thomas: we hebben nieuwe contacten kunnen leggen. Concrete samenwerkingen zijn er nog niet, maar die zitten er wel aan te komen. Tijdens de livesessie van VDL had ik een mooi gesprek over accupacks en de verschillende soorten stekkers die daarbij horen. Door op die manier kennis uit te wisselen, help je elkaar en eigenlijk de hele industrie verder.
Hebben jullie nog tips waar we mee aan de slag kunnen gaan de komende tijd? Tijmen: misschien moeten we richting overheden een richtlijnendocument opstellen om te zorgen dat individuele ambtenaren begrijpen waar het over gaat, zodat de juiste keuzes worden gemaakt over bijvoorbeeld het afgeven van vergunningen.
Thomas: wellicht is het ook goed om een whitepaper te hebben met positieve praktijkervaringen. Dan kun je voorkomen dat zaken die zich al bewezen hebben in de praktijk simpelweg door onwetendheid worden tegengehouden. Dat we laten zien: we kunnen het, het is niet zo spannend en we hebben al veel geleerd.
Wat kunnen jullie voor andere ENI-leden betekenen? Tijmen: wij hebben een product waar mogelijk veel vraag naar kan zijn bij andere ENI-leden. Wij hebben namelijk dé oplossing voor heavy offroad vehicles. Daarnaast kunnen we elkaar helpen met bijvoorbeeld technische problemen. Het zou gek zijn als we overal hetzelfde apart van elkaar gaan uitvinden. Dat past niet bij kennismaatschappij Nederland.
Thomas: het zal enorm helpen om samen richting een standaardisatie te werken. Het is goed om met collega-machinebouwers in gesprek te blijven om te kijken of je naast kennis ook technologie kunt delen.
Het is 2026… Waar staan we als Nederland m.b.t. emissieloos bouwen? In ieder geval een stuk verder dan de rest van de wereld. We hebben in Nederland bewezen dat emissieloos bouwen werkt en economisch duurzaam kan zijn. Uiteindelijk is dat ook een drive. De problemen die er nu zijn, kunnen op relatief korte termijn worden opgelost.
Elektrificatie van zwaar bouwmaterieel
Door de strenge C02-emissiemaatregelen voor bouwprojecten in Nederland (en daarbuiten) is de vraag naar elektrische versies van zwaar bouwmaterieel groter dan de huidige productie. Dit betekent dat er een groeiende markt is voor de elektrificatie van bouwmaterieel. Power Battery heeft besloten om een haalbaarheidsstudie uit te voeren om te bepalen hoe zij kunnen bijdragen aan deze trend door gestandaardiseerde oplossingen en batterijpakketten aan te bieden voor het ombouwen van voertuigen naar elektrische voertuigen met nul-emissie!
De haalbaarheidsstudie schetsen
Laurence Smits volgt een automotive afstudeerrichting aan de Fontys hogeschool, die het onderzoek uitvoert en de resultaten zal verwerken in een uitgebreid resultaat voor Power Battery. Hij zegt over dit onderzoek: “We ontdekten dat er ruwweg 40-50 verschillende typen zware voertuigen zijn die ingezet kunnen worden op een bouwplaats. Er is een grote variatie in toepassingen voor deze voertuigen, maar ze hebben ook een paar dingen gemeen, zoals hun gewicht (tot 40 ton of meer) en enorme dieseltanks (tot 1000 liter en meer).”
“Met een brandstofverbruik tot 30 l/uur kun je je voorstellen hoeveel C02-uitstoot je voor het hele bouwproject kunt verminderen als deze voertuigen allemaal EV’s zouden zijn”, voegt Laurence toe. In Nederland wordt de winst in de bouw meestal toegewezen aan het bouwbedrijf dat de beste kwaliteit voor de beste prijs kan leveren. Tegenwoordig begint de CO2-uitstoot een steeds grotere rol te spelen in de besluitvormingsprocessen van lokale overheden en bouwbedrijven. Aanbestedingen worden dus gewonnen door het bedrijf dat de laagste emissies biedt bovenop de kwaliteit van het bouwproject zelf. Dat is de basis van de business case voor de aanschaf van elektrische versies van bouwmachines.
Elektrische bouwmachines zijn nog steeds schaars
Er is een grote vraag naar elektrisch bouwmaterieel op de huidige markt, waaraan de fabrikanten van materieel niet voldoen. Dat betekent dat massa-elektrificatie van conventionele bouwvoertuigen economisch haalbaar is. Power Battery heeft met verschillende partijen in de markt gesproken en is op zoek naar langetermijnpartnerschappen met aanpassingsbedrijven, leasemaatschappijen en machinedealers door hen gestandaardiseerde oplossingen aan te bieden.
Voor ons onderzoek is de volgende stap het kiezen van één type bouwvoertuig en het ontwerpen van een professioneel, veilig en duurzaam drop-in batterijpakket, dat het brute leven op een bouwplaats kan overleven. Met dit ontwerp kunnen we deze standaardpakketten in de juiste volumes produceren. Laurence zegt: “De volgende stap in mijn onderzoek is het ontwerpen van een batterijpakket in CAD dat als standaardpakket kan worden gebruikt. Daarna bouw ik een prototype, zodat we het in een echt voertuig kunnen testen.”
Tot nu toe heeft ons onderzoek een aantal positieve resultaten laten zien en we verwachten snel naar de volgende fase te gaan. Dan kunnen we ons onderzoek afronden, waarbij we ook rekening houden met schaalbaarheid en totale eigendomskosten.
Bent u geïnteresseerd in deelname aan ons onderzoek? Dan helpt u ons te bouwen aan een groenere toekomst door bouwmachines te elektrificeren!
Waterstof wordt steeds belangrijker in onze batterijoplossingen
Bij Power Battery zien we de ontwikkelingen richting waterstofintegratie in hoog tempo toenemen. Zo’n 35% van alle aanvragen voor onze batterijpakketten omvat inmiddels een waterstofcomponent.
Of het nu gaat om volledige hybride integratie of als buffer om de specifieke kenmerken van een brandstofcel te ondersteunen, waterstof wordt steeds belangrijker in onze oplossingen. Van deze aanvragen is ongeveer 25% bedoeld voor mobiele toepassingen, terwijl maar liefst 75% bedoeld is voor toepassingen in het grid.
Wij zijn ervan overtuigd dat de verschuiving naar waterstof een logische is. Er zijn eenvoudigweg tal van toepassingen die niet haalbaar zijn met alleen elektrische energie. Bovendien roepen de praktische aspecten van het transporteren en opladen van containers gevuld met batterijcellen met dieselvoertuigen legitieme vragen op.
Op dit moment lijken de discussies over waterstof gepolariseerd te zijn, met voor- en tegenstanders die de overhand hebben in het gesprek. Een gematigd standpunt lijkt echter zeldzaam.
Voor ons bij Power Battery is de keuze tussen volledig elektrisch of waterstofhybride minder aanwezig. We ontwikkelen en produceren op maat gemaakte batterijoplossingen voor verschillende toepassingen. Elke brandstofcel heeft zijn eigen unieke kenmerken, die specifieke celchemie en verpakkingsoplossingen vereisen.
Onze engineering kennis en ervaring, over hoe een batterijpakket te koppelen aan een waterstofhybride toepassing, is de afgelopen periode enorm uitgebreid. 𝗪𝗲 𝘇𝗶𝗷𝗻 𝗯𝗲𝗻𝗶𝗲𝘂𝘄𝗱 𝗻𝗮𝗮𝗿 𝗷𝗼𝘂𝘄 𝗲𝗿𝘃𝗮𝗿𝗶𝗻𝗴𝗲𝗻 𝗵𝗶𝗲𝗿𝗺𝗲𝗲. 𝗟𝗮𝗮𝘁 𝗵𝗲𝘁 𝗼𝗻𝘀 𝘄𝗲𝘁𝗲𝗻, 𝗺𝗼𝗼𝗶 𝘄𝗮𝗻𝗻𝗲𝗲𝗿 𝘄𝗲 𝗲𝗹𝗸𝗮𝗮𝗿 𝗸𝘂𝗻𝗻𝗲𝗻 𝘃𝗲𝗿𝘀𝘁𝗲𝗿𝗸𝗲𝗻.